

2x6 SFF, SC-RJ Connector, 1 mm POF and 200 µm HCS, RoHS Compliant

Preliminary Data Sheet

Applications

- Fast Ethernet
- FDDI
- Multimode fiber links
- Optical-Electrical Interface Conversion

Features

• 650 nm LED

Multi-rate: 10-125 Mb/s, NRZ

- Single +3.3 V Power Supply
- · RoHS Compliant and Lead-free
- PECL Differential Electrical Interface
- Compliant with Multi-Source Agreement (MSA)
 Small Form Factor (SFF) 2x6 Footprint
- · SC-RJ Connector
- Compliant with SFF-8472 Digital Diagnostic Monitoring Interface
- Eye Safety
 Designed to meet LED Class 1

Description

The CT-0125NPF-R41C-E series from Coretek Opto Corp. are the high performance and cost-effective modules for serial optical data communication applications specified for data rates of 125 Mb/s. It operates with +3.3 V power supply. The module is intended for multi-mode fiber, operates at a nominal wavelength of 650 nm and complies with Multi-Source Agreement (MSA) Small Form Factor (SFF) 2x6 foot print. Each module consists of a transmitter optical subassembly, a receiver optical subassembly and an electrical subassembly. All of them are housed in a plastic package and the combination produces a reliable component. The module is a transceiver with SC-RJ connector designed for use in Fast Ethernet (100 Mb/s) or Ethernet (10 Mb/s) over 50 meters POF and 100 meters HCS fiber.

EMC

Most equipment utilizing high-speed transceivers will be required to meet the following requirements:

- 1) FCC in the United States
- 2) CENELEC EN55022 (CISPR 22) in Europe
- 3) EN 61000-6-4 (September 2011)

To assist the customer in managing the overall equipment EMC performance, the transceivers have been designed to satisfy FCC class B limits and provide good immunity to radio-frequency electromagnetic fields.

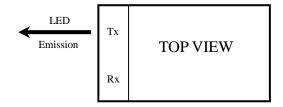
Eye Safety

This LED based multi-mode transceiver is an AEL Class 1 product. It complies with IEC 60825-1 (+A11).

AEL CLASS 1 LED PRODUCT

To meet LED safety requirements the transceiver shall be operated within the Absolute Maximum Ratings.

Note: All adjustments have been made at the factory prior to shipment of the devices. No maintenance or alteration to the device is required. Tampering with or modifying the performance of the device will result in voided product warranty.


LED Emission Data

Wavelength : 650 nm

Maximum total output power : 0.394 mW / -4 dBm

(as defined by IEC: 7 mm aperture at 14 mm distance)

Beam divergence (full angle) / NA (half angle) : 17.5° / 0.15 rad

Required Labels

IEC: "Class 1 LED Product"

LED Class 1 Laser Product Information:

Model Number	Operating Voltage & SD Output	Distance	Wavelength
CT-0125NPF-R41C-E	3.3 V PECL AC/DC	50 m 0.5NA POF 100 m 0.37NA HCS	650 nm

ABSOLUTE MAX RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNIT	NOTE
Storage Temperature	T_{S}	-40	85	°C	
Supply Voltage	V_{CC}	-0.5	4	V	
Lead Soldering Temperature/Time	T_{SOLD}		260	°C	10 sec on lead
Data Input Voltage		-0.5	Vcc	V	

OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Case Operating Temperature	$T_{\rm C}$	-40		85	°C	
Supply Voltage	V_{CC}	2.97		3.63	V	
Supply Current	I_{CC}			220	mA	

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN	MAX	UNIT	NOTE
Transmitter					
Differential Input Voltage	V_{D}	0.4	1.6	V	
TTL Transmit Disable Input Voltage - Low	$V_{ m IL}$		0.8	V	
TTL Transmit Disable Input Voltage - High	$V_{ m IH}$	Vcc-1.3	Vcc	V	
Receiver					
Data Output Voltage – Low	V_{OL} - V_{CC}		-1.63	V	1
Data Output Voltage – High	V_{OH} - V_{CC}		-0.99	V	1
Data Output Voltage Swing	$V_{OH}-V_{OL}$	0.4	0.8	V	
Data Output Rise Time	$t_{\rm r}$	0.35	2.2	ns	
Data Output Fall Time	t_{f}	0.35	2.2	ns	
Duty Cycle Distortion	DCD	-1	+1	ns	
Data Dependent Jitter (rise/fall)	DDJ		1.5	ns	
Random Jitter	RJ		0.2	ns	
Signal Detect Output Voltage – Low	V_{OL} - V_{CC}	-1.810	-1.63	V	1
Signal Detect Output Voltage – High	V_{OH} - V_{CC}	-1.025	-0.99	V	1

TRANSMITTER ELECTRO-OPTICAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN	TYP.	MAX	UNIT	NOTE
Average Launched Power (1mm POF, NA=0.5)	Po	-12	-8	-2	dBm	
Average Launched Power (200um HCS, NA=0.37)	Po	-14	-10	-4	dBm	
Optical Modulation Amplitude (POF)	OMA	-10		-0.5	dBm	_
Optical Modulation Amplitude (HCS)	OMA	-12		-3.5	dBm	
Duty Cycle Distortion Contributed by the Transmitter	DCD	-1		+1	ns	Peak to peak
Random Jitter Contributed by the Transmitter	RJ			0.2	ns	Peak to peak
Center Wavelength	λς	635	650	660	nm	2
Spectral Width (RMS)	Δλ			17	nm	2
Optical Rise time (10%-90%)	t _r			6.5	ns	
Optical Fall time (10%-90%)	t_{f}			6.5	ns	
Overshoot	·			40	%	

RECEIVER ELECTRO-OPTICAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN	TYP.	MAX	UNIT	NOTE
Input Optical Power Maximum, OMA (POF)	P_{max}			+1	dBm	
Input Optical Power Maximum, OMA (HCS)	P_{max}			-3	dBm	
Unstressed receiver sensitivity, OMA (POF)	OMA	-23			dBm	3
Unstressed receiver sensitivity, OMA (HCS)	OMA	-26.8			dBm	3
Operating Wavelength	λ	635	650	660	nm	
Signal Detect - Asserted	P_{A}		2		dB	4
Signal Detect - Deasserted	P_{D}		5		dB	4
Signal Detect - Hysteresis	P _A - P _D	1.5	3		dB	

Notes:

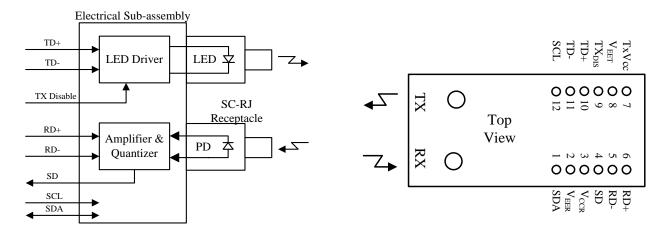
- 1. These outputs are compatible with 10K, 10KH, 100K ECL and PECL inputs.
- 2. Measured at the chip level in the axial direction.
- 3. Measured with PRBS 2⁷-1 at BER<2.5X10⁻¹⁰
- 4. Signal Detect Asserted and De-asserted levels are indicated as dB below unstressed receiver sensitivity level for either POF or HCS

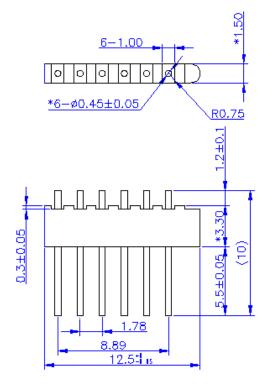
Timing characteristics

Tilling onuractoriotics				
PARAMETER	SYMBOL MI	N MAX	UNIT	NOTE
TX_DISABLE assert time	t_off	10	μs	5
TX_DISABLE negative time	t_on	1	ms	6
Time to initialize	t_init	100	ms	7
RX_SD assert time	t_sd_on	100	μs	8
RX_SD de-assert time	t_sd_off	100	μs	9
Analog parameter data ready	t_data	1000	ms	10
Serial bus hardware ready	t_serial	300	ms	11
Write cycle time	t_write	10	ms	12
Software TX_DISABLE assert time	t_off_soft	100	ms	
Software TX_DISABLE negate time	t_on_soft	100	ms	
Software RX_SD assert time	t_sd_on_soft	100	ms	
Software RX_SD de-assert time	t_sd_off_soft	100	ms	
Serial ID cleck rate	f_serial_clock	400	kHz	

Page 4 of 13 04/29/2014

Version: A3


Notes:


- 5. Time from rising edge of TX_DISABLE to when the optical output falls below 10% of nominal.
- 6. Time from falling edge of TX_DISABLE to when the optical output rises above 90% of nominal.
- 7. Time from Power on or falling edge of TX_DISABLE to when the modulated optical output rises above 90% of normal.
- 8. Time from valid optical signal to RX_SD assertion.
- 9. Time from loss of optical signal to RX_SD de-assertion.
- 10. From power on to data ready bit asserted. Data ready indicates analog monitoring circuitry is operational.
- 11. Time from power on until module is ready for data transmission over the serial bus (reads or writes over A0h and A2h)
- 12. Time from stop bit to completion of 1-8 byte write command.

BLOCK DIAGRAM OF TRANSCEIVER

PIN OUT DIAGRAM OF TRANSCEIVER

1. PIN Material: Brass (C2700) / Gold Flash, Halogen Free

PIN OUT TABLE

Pin	Symbol	Functional Description
Moun	ting Posts	The mounting posts are provided for transceiver mechanical attachment to the circuit board. They should not be connected to the circuit ground but can be connected to the chassis ground.
1	SDA	Serial I ² C Data "4.7k-10k ohm pull up on host board"
2	$V_{\rm EER}$	Receiver Signal Ground
3	V_{CCR}	Receiver Power Supply
4	SD	Signal Detect is a LVPECL output. A high level indicates a received optical signal
5	RD-	Receiver Data Inverted Differential Output
6	RD+	Receiver Data Non-inverted Differential Output
7	V_{CCT}	Transmitter Power Supply
8	$V_{\rm EET}$	Transmitter Signal Ground
9	TX_{DIS}	Transmitter Disable "internally pulled up 8.2k ohm. High = Transmitter off"
10	TD+	Transmitter Data Non-inverted Differential Input
11	TD-	Transmitter Data Inverted Differential Input
12	SCL	Serial I ² C Clock "4.7k-10k ohm pull up on host board"

Digital Diagnostic Memory Map

Specific Data Field Descriptions

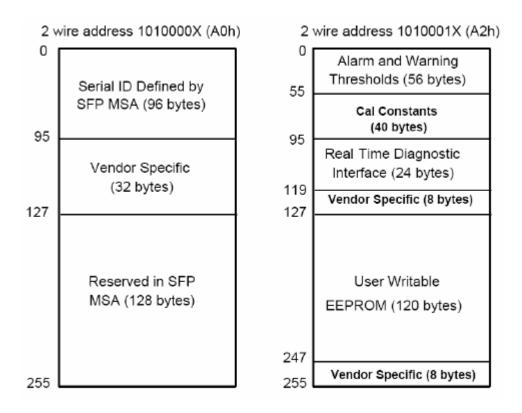


Figure 1, EEPROM Memory Map Specific Data Field Descriptions

EEPROM Serial ID Memory Contents

Table 1 - EEPROM Serial ID Memory Contents (A0h)

Addr.	Field Size (Bytes)	Name of Field	Hex	Description
00	1	Identifier	00	
01	1	Ext. Identifier	00	
02	1	Connector	00	
03 ~ 10	8	Transceiver Codes	00 00 00 00 00 00 00 00	
11	1	Encoding	00	
12	1	BR, Nominal	00	
13	1	Reserved	00	
14	1	Length (SMF)-km	00	
15	1	Length (SMF)-100m	00	
16	1	Length (50 µm, OM2)	00	
17	1	Length (62.5 µm, OM1)	00	
18	1	Length (copper)	00	
19	1	Length (50 µm, OM3)	00	
20 ~ 35	16	Vendor Name	43 4F 52 45 54 45 4B 20 20 20 20 20 20 20 20 20 20 20 20	CORETEK
36	1	Unallocated	00	
37 ~ 39	3	OUI Code	00 00 00	No OUI Code
40 ~ 55	16	Vendor PN	43 54 2D 30 31 32 35 4E 50 46 2D 52 34 31 43 45	CT-0125NPF-R41CE
56 ~ 59	4	Vendor Rev	20 20 20 20	
60 ~ 61	2	Wavelength	02 8A	650 nm
62	1	Reserved	00	
63	1	CC BASE	XX	Check sum
64 ~ 65	2	Options	00 14	
66	1	BR max	00	
67	1	BR min	00	
68 ~ 83	16	Vendor SN	xxxxxxxxxxxxx	
84 ~ 91	8	Date code		
92	1	Diagnostic Monitoring Type	68	
93	1	Enhanced Options	90	
94	1	SFF-8472	01	Rev 9.3 of SFF-8472 Compliance
95	1	CC BASE	XX	Check sum
96 ~ 127	32	Vendor Specific		

Digital Diagnostic Monitoring Interface (2-Wire Address A2h)

Alarm and Warning Thresholds (2 Wire Address A2h)

Address	# Bytes	Name of Field	HE	Real Value	Uni
00-01	2	Temp High Alarm [1]	73 00	115°C	Degree C
02-03	2	Temp Low Alarm [1]	D8 00	-40°C	Degree C
04-05	2	Temp High Warning [1]	69 00	105°C	Degree C
06-07	2	Temp Low Warning [1]	DD 00	-35°C	Degree C
08-09	2	Voltage High Alarm [2]	98 58	3.9	V
10-11	2	Voltage Low Alarm [2]	69 78	2.7	V
12-13	2	Voltage High Warning [2]	8D CC	3.63	V
14-15	2	Voltage Low Warning [2]	74 04	2.97	V
16-17	2	Bias High Alarm [3]	75 30	60	mA
18-19	2	Bias Low Alarm [3]	03 E8	2	mA
20-21	2	Bias High Warning [3]	75 30	60	mA
22-23	2	Bias Low Warning [3]	03 E8	2	mA
24-25	2	Tx Power High Alarm [4]	1B 66	-1.54	dBm
26-27	2	Tx Power Low Alarm [4]	00 D3	-16.75	dBm
28-29	2	Tx Power High Warning [4]	17 89	-2.2	dBm
30-31	2	Tx Power Low Warning [4]	01 B2	-13.6	dBm
32-33	2	Rx Power High Alarm [5]	FF B7	8.16	dBm
34-35	2	Rx Power Low Alarm [5]	00 01	-40.0	dBm
36-37	2	Rx Power High Warning [5]	FF DC	8.16	dBm
38-39	2	Rx Power Low Warning [5]	00 01	-40.0	dBm
40	1	Rx OMA Margin L alarm	08	1.6	dB
41	1	Rx OMA Margin L warning	12	3.6	dB
42-55	14	Reserved			
56-94	29	Note [6]			
55	1	Checksum	XX		

Calibration Constants (2 Wire Address A2h)

Address	# Bytes	Name of Field	HEX	Description
56-59	4	Rx_PWR (4)	00 00 00 00	Set to zero for "internally calibrated" devices
60-63	4	Rx_PWR (3)	00 00 00 00	Set to zero for "internally calibrated" devices
64-67	4	Rx_PWR (2)	00 00 00 00	Set to zero for "internally calibrated" devices
68-71	4	Rx_PWR (1)	3F 80 00 00	Set to 1 for "internally calibrated" devices
72-75	4	Rx_PWR (0)	00 00 00 00	Set to zero for "internally calibrated" devices
76-77	2	Tx_I (Slope)	01 00	Set to 1 for "internally calibrated" devices
78-79	2	Tx_I (Offset)	00 00	Set to zero for "internally calibrated" devices
80-81	2	Tx_PWR (Slope)	01 00	Set to 1 for "internally calibrated" devices
82-83	2	Tx_PWR (Offset)	00 00	Set to zero for "internally calibrated" devices
84-85	2	T (Slope)	01 00	Set to 1 for "internally calibrated" devices
86-87	2	T (Offset)	00 00	Set to zero for "internally calibrated" devices
88-89	2	V (Slope)	01 00	Set to 1 for "internally calibrated" devices
90-91	2	V (Offset)	00 00	Set to zero for "internally calibrated" devices
92-94	3	Reserved	00 00 00	Reserved
95	1	Checksum	XX	Checksum of bytes 0 – 94

A/D Value (2 Wire Address A2h)

Address	# Bytes	Name of Field	Description
96-97	2	Temperature (MSB, LSB) [1]	Internally measured module temperature
98-99	2	Supply Voltage (MSB, LSB) [2]	Internally measured supply voltage in module
100-101	2	Tx Bias Current (MSB, LSB) [3]	Internally measured Tx Bias current
102-103	2	Tx Optical Power (MSB, LSB) [4]	Internally measured Tx Optical Power
104-105	2	Rx Received Power (MSB, LSB) [5]	Internally measured Rx input power
106	1	Rx OMA Margin [7]	Internally measured Rx OMA Margin
107-109	3	Reserved	

- Temperature (Temp) is decoded as a 16-bit signed twos complement integer in increments of 1/256°C 1.
- Supply Voltage (Vcc) is decoded as a 16-bit unsigned integer in increments of 100 μV
- LED bias current (Tx Bias) is decoded as a 16-bit unsigned integer in increments of 2 μA
- It is defined as operating DC bias current mapped equally to Tx Optical Power Transmitted average optical power (Tx Pwr) is decoded as a 16-bit unsigned integer in increments of 0.1 µW
- Receiver average optical power (Tx Pwr) is decoded as a 16-bit unsigned integer in increments of 0.1 μ W Bytes 56-94 are not intended for use with CT-0125NPF-R41C-E, but had been sent to default values per SFF-8472
- Received OMA margin is decoded as an 8-bit signed twos complement integer in increments of 0.2 dB Received OMA margin = Receiver Input Power (OMA) - Receiver Sensitivity (OMA)

Status Bits and Alarm/Warning Flag Bits (2 Wire Address A2h)

Address	Bit	Name	Description		
110	7	TX Disable State	Digital state of Tx disable (1) and enabled (0)		
110	6	Soft TX Disable	Read/write bit that allows software disable of Tx		
440			Writing 1 to disable Tx		
110	5	Reserved			
110	4-2	Not supported			
110	1	Signal Detect State	Digital state of SD output pin. 1=optical signal detected 0=no optical signal detected		
110	0	Data_Ready_Bar	Indicate transceiver is powered and real time sense data is ready(0=ready)		
112	7	Temp High Alarm	Set when internal temperature exceeds high alarm level		
112	6	Temp Low Alarm	Set when internal temperature is below low alarm level		
112	5	Vcc High Alarm	Set when internal supply voltage exceeds high alarm level		
112	4	Vcc Low Alarm	Set when internal supply voltage is below low alarm level		
112	3	TX Bias High Alarm	Set when TX Bias current exceeds high alarm level		
112	2	TX Bias Low Alarm	Set when TX Bias current is below low alarm level		
112	1	TX Power High Alarm	Set when TX Power exceeds high alarm level		
112	0	TX Power Low Alarm	Set when TX Power is below low alarm level		
113	7	RX Power High Alarm	Set when Received Power exceeds high alarm level		
113	6	RX Power Low Alarm	Set when Received Power is below low alarm level		
113	5	RX OMA Margin Alarm	Set when Received Rx OMA Margin exceeds low alarm level		
113	4-0	Reserved			
116	7	Temp High Warning	Set when internal temperature exceeds high warning level		
116	6	Temp Low Warning	Set when internal temperature is below low warning level		
116	5	Vcc High Warning	Set when internal supply voltage >high warning level		
116	4	Vcc Low Warning	Set when internal supply voltage < low warning level		
116	3	TX Bias High Warning	Set when TX Bias current exceeds high warning level		
116	2	TX Bias Low Warning	Set when TX Bias current is below low warning level		
116	1	TX Power High Warning	Set when TX Power exceeds high warning level		
116	0	TX Power Low Warning	Set when TX Power is below low warning level		
117	7	RX Power High Warning	Set when Received Power exceeds high warning level		
117	6	RX Power Low Warning	Set when Received Power is below low warning level		
117	5	RX OMA Margin Warning	Set when Received Rx OMA Margin exceeds low Warning level		
117	4-0	Reserved Warning			

Monitoring Specification

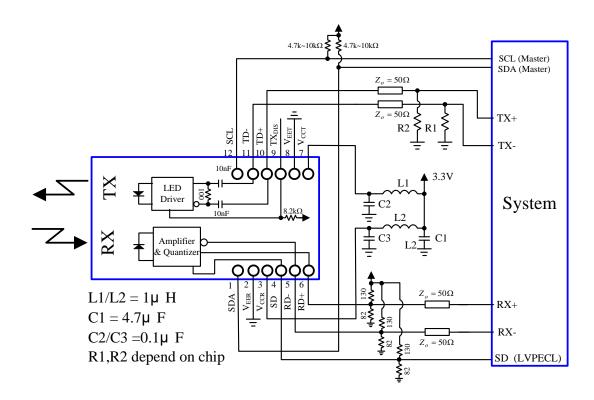
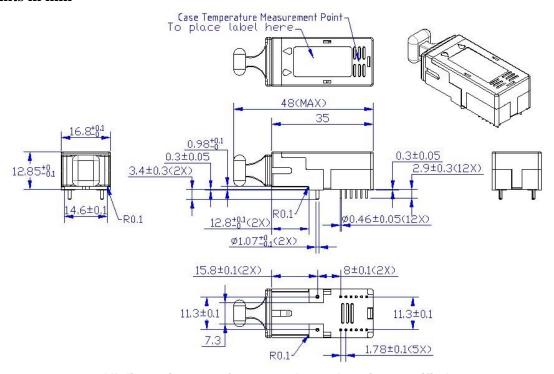

The digital diagnostic monitoring interface also defines another 256-byte memory map in EEPROM, which makes use of the 8 bit address 1010001X (A2h). Please see Figure 1. For detail EEPROM information, please refer to the related document of SFF-8472 Rev 9.5. The monitoring specification of this product is described in Table 3.

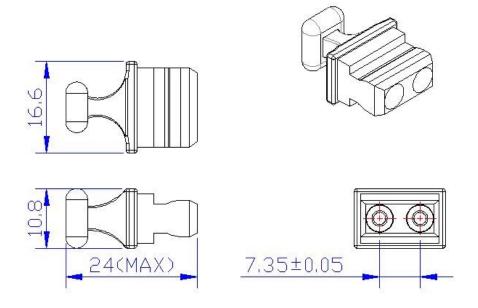
Table 3 - Monitoring Accuracy Specification

Parameter	Min.	Note
Transceiver internal Temperature	±5°C	Valid from -40°C to 85°C case temperature
Transceiver internal Voltage	±0.1 V	Valid over 2.97 V ~ 3.63 V
Transceiver LED Bias Current	3 mA	
Transmitted average optical output power TX Power - POF	±3 dB	Coupled into 1 mm plastic optical fiber
Transmitted average optical output power TX Power - HCS	±3 dB	Coupled into 200 µm hard clad silica fiber
Received average optical input Power- POF	±1.5 dB	Coupled from 1 mm plastic optical fiber
Received average optical input Power- HCS	±1.5 dB	Coupled from 200 µm hard clad silica fiber
	±1.5 dB	Coupled into 1mm plastic optical fiber Valid over Rx OMA Margin Range: 0 to 3 dB
Received OMA margin - POF	±2.5 dB	Coupled into 1mm plastic optical fiber Valid over Rx OMA Margin Range: 3 to 6 dB
	±3 dB	Coupled into 1mm plastic optical fiber Valid over Rx OMA Margin Range: ≥6 dB
	±1.5 dB	Coupled into 200µm hard clad silica fiber Valid over Rx OMA Margin Range: 0 to 3 dB
Received OMA margin - HCS	±2.5 dB	Coupled into 200µm hard clad silica fiber Valid over Rx OMA Margin Range: 3 to 6 dB
	±3 dB	Coupled into 1mm plastic optical fiber Valid over Rx OMA Margin Range: ≥6 dB

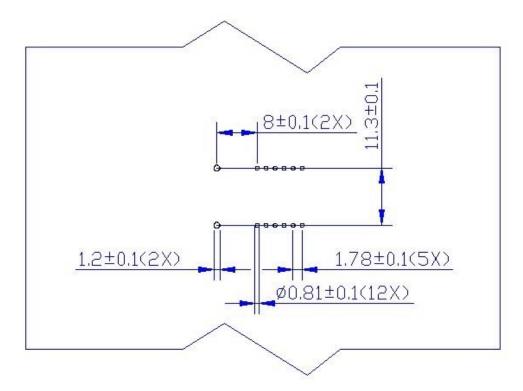


RECOMMENDED CIRCUIT SCHEMATIC

MECHANICAL DIMENSIONS


Units in mm

All dimensions are ±0.2mm unless otherwise specified.



DUST PLUG DIMENSIONS

RECOMMENDED SFF HOST BOARD LAYOUT

Units in mm

Claim:

CORETEK Opto Corp. reserves the right to make changes in the specification described hereinafter without prior notice.